VQL Fundamentals

VQL is central to the design and functionality of Velociraptor, and a solid grasp of VQL is critical to understanding and extending Velociraptor.

Why a new query language?

The need for a query language arose from our experience of previous Digital Forensic and Incident Response (DFIR) frameworks. Endpoint analysis tools must be flexible enough to adapt to new indicators of compromise (IOCs) and protect against new threats. While it is always possible to develop new capability in code, it’s not always easy or quick to deploy a new version.

A query language can accelerate the time it takes to discover an IOC, design a rule to detect it, and then deploy the detection at scale across a large number of hosts. Using VQL, a DFIR investigator can learn of a new type of indicator, write relevant VQL queries, package them in an artifact, and hunt for the artifact across the entire deployment in a matter of minutes.

Additionally, VQL artifacts can be shared with the community and facilitate a DFIR-specific knowledge exchange of indicators and detection techniques.

Running VQL queries - Notebooks

When learning VQL, we recommend practicing in an environment where you can easily debug, iterate, and interactively test each query.

You can read more about notebooks here. For the purposes of this documentation, we will assume you created a notebook and are typing VQL into the cell.

Basic Syntax

VQL’s syntax is heavily inspired by SQL. It uses the same basic SELECT .. FROM .. WHERE sentence structure, but does not include the more complex SQL syntax, such as JOIN or HAVING. In VQL, similar functionality is provided through plugins, which keeps the syntax simple and concise.


VQL does not place any restrictions on the use of whitespace in the query body. We generally prefer queries that are well indented because they are more readable and look better but this is not a requirement. Unlike SQL, VQL does not require or allow a semicolon ; at the end of statements.

The following two queries are equivalent

-- This query is all on the same line - not very readable but valid.

-- We prefer well indented queries but VQL does not mind.

Let’s consider the basic syntax of a VQL query.

Basic syntax
Basic syntax

The query starts with a SELECT keyword, followed by a list of Column Selectors then the FROM keyword and a VQL Plugin potentially taking arguments. Finally we have a WHERE keyword followed by a filter expression.


While VQL syntax is similar to SQL, SQL was designed to work on static tables in a database. In VQL, the data sources are not actually static tables on disk - they are provided by code that runs to generate rows. VQL Plugins produce rows and are positioned after the FROM clause.

Like all code, VQL plugins use parameters to customize and control their operations. VQL Syntax requires all arguments to be provided by name (these are called keyword arguments). Depending on the specific plugins, some arguments are required while some are optional.

You can type ? in the Notebook interface to view a list of possible completions for a keyword. Completions are context sensitive. For example, since plugins must follow the FROM keyword, any suggestions after the FROM keyword will be for VQL plugins. Typing ? inside a plugin arguments list shows the possible arguments, their type, and if they are required or optional.

VQL Plugin Completions
VQL Plugin Completions

VQL Plugin arguments Completions
VQL Plugin arguments Completions

Life of a query

In order to understand how VQL works, let’s follow a single row through the query.

Life of a query
Life of a query

  1. Velociraptor’s VQL engine will call the plugin and pass any relevant arguments to it. The plugin will then generate one or more rows and send a row at a time into the query for further processing.

  2. The column expression in the query receives the row. However, instead of evaluating the column expression immediately, VQL wraps the column expression in a Lazy Evaluator. Lazy evaluators allow the actual evaluation of the column expression to be delayed until a later time.

  3. Next, VQL takes the lazy evaluator and uses them to evaluate the filter condition, which will determine if the row is to be eliminated or passed on.

  4. In this example, the filter condition (X=1) must evaluate the value of X and therefore will trigger the Lazy Evaluator.

  5. Assuming X is indeed 1, the filter will return TRUE and the row will be emitted from the query.

Lazy Evaluation

In the previous example, the VQL engine goes through signficant effort to postpone the evaluation as much as possible. Delaying an evaluation is a recurring theme in VQL and it saves Velociraptor from performing unnecessary work, like evaluating a column value if the entire row will be filtered out.

Understanding lazy evaluation is critical to writing efficient VQL queries. Let’s examine how this work using a series of experiments. For these experiments we will use the log() VQL function, which simply produces a log message when evaluated.

-- Case 1: One row and one log message
SELECT OS, log(message="I Ran!") AS Log
FROM info()

-- Case 2: No rows and no log messages
SELECT OS, log(message="I Ran!") AS Log
FROM info()
WHERE OS = "Unknown"

-- Case 3: Log message but no rows
SELECT OS, log(message="I Ran!") AS Log
FROM info()
WHERE Log AND OS = "Unknown"

-- Case 4: No rows and no log messages
SELECT OS, log(message="I Ran!") AS Log
FROM info()
WHERE OS = "Unknown" AND Log

In Case 1, a single row will be emitted by the query and the associated log function will be evaluated, producing a log message.

Case 2 adds a condition which should eliminate the row. Because the row is eliminated VQL can skip evaluation of the log() function. No log message will be produced.

Cases 3 and 4 illustrate VQL’s evaluation order of AND terms - from left to right with an early exit.

We can use this property to control when expensive functions are evaluated e.g. hash() or upload().

What is a Scope?

Scope is a concept common in many languages, and it is also central in VQL. A scope is a bag of names that is used to resolve symbols, functions and plugins in the query.

For example, consider the query


VQL sees “info” as a plugin and looks in the scope to get the real implementation of the plugin.

Scopes can be nested, which means that in different parts of the query a new child scope is used to evaluate the query. The child scope is constructed by layering a new set of names over the top of the previous set. When VQL tries to resolve a name, it looks up the scope in reverse order going from layer to layer until the symbol is resolved.

Take the following query for example,

Scope lookup
Scope lookup

VQL evaluates the info() plugin, which emits a single row. Then VQL creates a child scope, with the row at the bottom level. When VQL tries to resolve the symbol OS from the column expression, it examines the scope stack in reverse, checking if the symbol OS exists in the lower layer. If not, VQL checks the next layer, and so on.

Columns produced by a plugin are added to the child scope and therefore mask the same symbol name from parent scopes. This can sometimes unintentionally hide variables of the same name which are defined at a parent scope. If you find this happens to your query you can rename earlier symbols using the AS keyword to avoid this problem. For example:

SELECT Pid, Name, {
   SELECT Name FROM pslist(pid=Ppid)
} AS ParentName
FROM pslist()

In this query, the symbol Name in the outer query will be resolved from the rows emitted by pslist() but the second Name will be resolved from the row emitted by pslist(pid=Ppid) - or in other words, the parent’s name.

String constants

Strings denoted by " or ' can escape special characters using the \. For example, "\n" means a new line. This is useful but it also means that backslashes need to be escaped. This is sometimes inconvenient, especially when dealing with Windows paths (that contains a lot of backslashes).

Therefore, Velociraptor also offers a multi-line raw string which is denoted by ''' (three single quotes). Within this type of string no escaping is possible, and the all characters are treated literally - including new lines. You can use ''' to denote multi line strings.

Identifiers with spaces

In VQL an Identifier is the name of a column, member of a dict or a keyword name. Sometimes identifiers contain special characters such as space or . which make it difficult to specify them without having VQL get confused by these extra characters.

In this case it is possible to enclose the identifier name with back ticks (`).

In the following example, the query specifies keywords with spaces to the dict() plugin in order to create a dict with keys containing spaces.

The query then continues to extract the value from this key by enclosing the name of the key using backticks.

LET X = SELECT dict(`A key with spaces`="String value") AS Dict
FROM scope()

SELECT Dict, Dict.`A key with spaces` FROM X


VQL Subqueries can be specified as a column expression or as an arguments. Subqueries are delimited by { and }. Subqueries are also lazily evaluated, and will only be evaluated when necessary.

The following example demonstrates subqueries inside plugin args. The if() plugin will evaluate the then or the else query depending on the condition value (in this example when X has the value 1).

SELECT * FROM if(condition=X=1,

Subqueries as columns

You can use a subquery as a column which will cause it to be evaluated for each row (in this way it is similar to the foreach() plugin).

Since subqueries are always an array of dictionaries, the output if often difficult to read when the subquery returns many rows or columns. As a special case, VQL will simplify subqueries:

  1. If the subquery returns one row and has several columns, VQL will put a single dictionary of data in the column.
  2. If the subquery returns one row and a single column, the value is expanded into the cell.

These heuristics are helpful when constructing subqueries to enrich columns. If you wish to preserve the array of dicts you can use a VQL function instead.

Here is an example to demonstrate:

LET Foo =  SELECT "Hello" AS Greeting FROM scope()

SELECT { SELECT "Hello" AS Greeting FROM scope() } AS X,
       { SELECT "Hello" AS Greeting, "Goodbye" AS Farewell FROM scope() } AS Y,
       Foo AS Z
FROM scope()

In the above query - X is a subquery with a single row and a single column, therefore VQL will simplify the column X to contain "Hello" The second query contains two columns so VQL will simplify it into a dict.

Finally to get the full unsimplified content, a VQL stored query can be used. This will result in an array of one dict, containing a single column Greeting with value of Hello


An array may be defined either by ( and ) or [ and ]. Since it can be confusing to tell regular parenthesis from an array with a single element, VQL also allows a trailing comma to indicate a single element array. For example (1, ) means an array with one member, whereas (1) means a single value of 1.

The scope() plugin

VQL is strict about the syntax of a VQL statement. Each statement must have a plugin specified, however sometimes we dont really want to select from any plugin at all.

The default noop plugin is called scope() and simply returns the current scope as a single row. If you even need to write a query but do not want to actually run a plugin, use scope() as a noop plugin. For example

-- Returns one row with Value=4
SELECT 2 + 2 AS Value
FROM scope()

The Foreach plugin

VQL is modeled on basic SQL since SQL is a familiar language for new users to pick up. However, SQL quickly becomes more complex with very subtle syntax that only experienced SQL users use regularly. One of the more complex aspects of SQL is the JOIN operator which typically comes in multiple flavors with subtle differences (INNER JOIN, OUTER JOIN, CROSS JOIN etc).

While these make sense for SQL since they affect the way indexes are used in the query, VQL does not have table indexes, nor does it have any tables. Therefore the JOIN operator is meaningless for Velociraptor. To keep VQL simple and accessible, we specifically did not implement a JOIN operator. For a more detailed discussion of the JOIN operator see emulating join in VQL

Instead of a JOIN operator, VQL has the foreach() plugin, which is probably the most commonly used plugin in VQL queries. The foreach() plugin takes two arguments:

  1. The row parameter is a subquery that provides rows

  2. The query parameter is a subquery that will be evaluated on a subscope containing each row that is emitted by the row argument.

Consider the following query:

SELECT * FROM foreach(
        SELECT Exe FROM pslist(pid=getpid())
        SELECT ModTime, Size, FullPath FROM stat(filename=Exe)

Note how Exe is resolved from the produced row since the query is evaluated within the nested scope.

Foreach is useful when we want to run a query on the output of another query.

Foreach on steroids

Normally foreach iterates over each row one at a time. The foreach() plugin also takes the workers parameter. If this is larger than 1, foreach() will use multiple threads and evaluate the query query in each worker thread. This allows the query to evaluate values in parallel.

For example, the following query retrieves all the files in the System32 directory and calculates their hash.

SELECT FullPath, hash(path=FullPath)
FROM glob(globs="C:/Windows/system32/*")

As each row is emitted from the glob() plugin with a filename of a file, the hash() function is evaluated and the hash is calculated.

However this is linear, since each hash is calculated before the next hash is started - hence only one hash is calculated at once.

This example is very suitable for parallelization because globbing for all files is quite fast, but hashing the files can be slow. If we delegate the hashing to multiple threads, we can make more effective use of the CPU.

SELECT * FROM foreach(
   SELECT FullPath
   FROM glob(globs="C:/Windows/system32/*")
}, query={
   SELECT FullPath, hash(path=FullPath)
   FROM scope()
}, worker=10)

Foreach and deconstructing a dict

Deconstructing a dict means to take that dict and create a column for each field of that dict. Consider the following query:

LET Lines = '''Foo Bar
Hello World
Hi There

LET all_lines = SELECT grok(grok="%{NOTSPACE:First} %{NOTSPACE:Second}", data=Line) AS Parsed
FROM parse_lines(accessor="data", filename=Lines)

SELECT * FROM foreach(row=all_lines, column="Parsed")

This query reads some lines (for example log lines) and applies a grok expression to parse each line. The grok function will produce a dict after parsing the line with fields determined by the grok expression.

The all_lines query will have one column called “Parsed” containing a dict with two fields (First and Second). Using the column parameter to the foreach() plugin, foreach will use the value in that column as a row, deconstructing the dict into a table containing the First and Second column.

LET expressions

We know that subqueries can be used in various parts of the query, such as in a column specifier or as an argument to a plugin. While subqueries are convenient, they can become unwieldy when nested too deeply. VQL offers an alternative to subqueries called Stored Queries.

A stored query is a lazy evaluator of a query that we can store in the scope. Wherever the stored query is used it will be evaluated on demand. Consider the example below, where for each process, we evaluate the stat() plugin on the executable to check the modification time of the executable file.

LET myprocess = SELECT Exe FROM pslist()

LET mystat = SELECT ModTime, Size, FullPath
        FROM stat(filename=Exe)

SELECT * FROM foreach(row=myprocess, query=mystat)

A Stored Query is simply a query that is stored into a variable. It is not actually evaluated at the point of definition. At the point where the query is referred, that is where evaluation occurs. The scope at which the query is evaluated is derived from the point of reference.

For example in the query above, mystat simply stores the query itself. Velociraptor will then re-evaluate the mystat query for each row given by myprocess as part of the foreach() plugin operation.

LET expressions are lazy

We have previously seen VQL goes out of its way to do as little work as possible.

Consider the following query

LET myhashes = SELECT FullPath, hash(path=FullPath)
FROM glob(globs="C:/Windows/system32/*")

SELECT * FROM myhashes

The myhashes stored query hashes all files in System32 (many thousands of files). However, this query is used in a second query with a LIMIT clause.

When the query emits 5 rows in total, the entire query is cancelled (since we do not need any more data) which in turn aborts the myhashes query. Therefore, VQL is able to exit early from any query without having to wait for the query to complete.

This is possible because VQL queries are asynchronous - we do not calculate the entire result set of myhashes before using myhashes in another query, we simply pass the query itself and forward each row as needed.

Materialized LET expressions

A stored query does not in itself evaluate the query. Instead the query will be evaluated whenever it is referenced.

Sometimes this is not what we want to do. For example consider a query which takes a few seconds to run, but its output is not expected to change quickly. In that case, we actually want to cache the results of the query in memory and simply access it as an array.

Expanding a query into an array in memory is termed Materializing the query.

For example, consider the following query that lists all sockets on the machine, and attempts to resolve the process ID to a process name using the pslist() plugin.

LET process_lookup = SELECT Pid AS ProcessPid, Name FROM pslist()

SELECT Laddr, Status, Pid, {
   SELECT Name FROM process_lookup
   WHERE Pid = ProcessPid
} AS ProcessName
FROM netstat()

This query will be very slow because the process_lookup stored query will be re-evaluated for each row returned from netstat (that is, for each socket).

The process listing will not likely change during the few seconds it takes the query to run. It would be more efficient to have the process listing cached in memory for the entire length of the query.

We recommend that you Materialize the query:

LET process_lookup <= SELECT Pid AS ProcessPid, Name FROM pslist()

SELECT Laddr, Status, Pid, {
   SELECT Name FROM process_lookup
   WHERE Pid = ProcessPid
} AS ProcessName
FROM netstat()

The difference between this query and the previous one is that the LET clause uses <= instead of =. The <= is the materialize operator. It tells VQL to expand the query in place into an array which is then assigned to the variable process_lookup.

Subsequent accesses to process_lookup simply access an in-memory array of pid and name for all processes and do not need to run pslist() again.

Local functions

LET expressions may store queries into a variable, and have the queries evaluated in a subscope at the point of use.

A LET expression can also declare explicit passing of variables.

Consider the following example which is identical to the example above:

LET myprocess = SELECT Exe FROM pslist()

LET mystat(Exe) = SELECT ModTime, Size, FullPath
        FROM stat(filename=Exe)

SELECT * FROM foreach(row=myprocess, query={
  SELECT * FROM mystat(Exe=Exe)

This time mystat is declares as a VQL Local Plugin that takes arguments. Therefore we now pass it an parameter explicitly and it behaves as a plugin.

Similarly we can define a VQL Local Function.

LET MyFunc(X) = X + 5

-- Return 11
SELECT MyFunc(X=6) FROM scope()

Remember the difference between a VQL plugin and a VQL function is that a plugin returns multiple rows and therefore needs to appear between the FROM and WHERE clauses. A function simply takes several values and transforms them into a single value.

VQL Operators

In VQL an operator represents an operation to be taken on operands. Unlike SQL, VQL keeps the number of operators down, preferring to use VQL functions over introducing new operators.

The following operators are available. Most operators apply to two operands, one on the left and one on the right (so in the expression 1 + 2 we say that 1 is the Left Hand Side (LHS), 2 is the Right Hand Side (RHS) and + is the operator.

+ - * /These are the usual arithmetic operators
=~This is the regex operator, reads like “matches”. For example X =~ "Windows" will return TRUE if X matches the regex “Windows”
!= = < <= > >=The usual comparison operators.
inThe membership operator. Returns TRUE if the LHS is present in the RHS. Note that in is an exact case sensitive match
.The . operator is called the Associative operator. It dereferences a field from the LHS named by the RHS. For example X.Y extracts the field Y from the dict X


When VQL encounters an operator it needs to decide how to actually evaluate the operator. This depends on what types the LHS and RHS operands actually are. The way in which operators interact with the types of operands is called a protocol.

Generally VQL does the expected thing but it is valuable to understand which protocol will be chosen in specific cases.

Example - Regex operator

For example consider the following query

LET MyArray = ("X", "XY", "Y")
LET MyValue = "X"
LET MyInteger = 5

SELECT MyArray =~ "X", MyValue =~ "X", MyInteger =~ "5"
FROM scope()

In the first case the regex operator is applied to an array so the expression is true if any member of the array matches the regular expression.

The second case applied the regex to a string, so it is true if the string matches.

Finally in the last case, the regex is applied to an integer. It makes no sense to apply a regular expression to an integer and so VQL returns FALSE.

Example - Associative operator applied on a stored query

The Associative operator is denoted by . and accesses a field from an object or dict. One of the interesting protocols of the . operator is when it is applied to a query or a list.

In the following example, I define a stored query that calls the Generic.Utils.FetchBinary artifact (This artifact fetches the named binary):

LET binary = SELECT FullPath
  FROM Artifact.Generic.Utils.FetchBinary(ToolName="ToolName")

Although a query defined via the LET keyword does not actually run the query immediately (it is a lazy operator), we can think of the variable binary as containing an array of dictionaries (e.g. [{"FullPath": "C:\Windows\Temp\binary.exe"}]).

If we now apply the associative operator . to the variable binary, the operator will convert the array into another array, where each member is extracted for example binary.FullPath is ["C:\Windows\Temp\binary.exe"]. To access the name of the binary we can then index the first element from the array.

SELECT * FROM execve(argv=[binary.FullPath[0], "-flag"])

While using the . operator is useful to apply to a stored query, care must be taken that the query is not too large. In VQL stored queries are lazy and do not actually execute until needed because they can generate thousands of rows! The . operator expands the query into an array and may exhaust memory doing so.

The following query may be disastrous:

LET MFT = SELECT * FROM Artifact.Windows.NTFS.MFT()

SELECT MFT.FullPath FROM scope()

The Windows.NTFS.MFT artifact typically generates millions of rows, and MFT.FullPath will expand them all into memory!

VQL control structures

Let’s summarizes some of the more frequent VQL control structures.

We already met with the foreach() plugin before. The row parameter can also receive any iterable type (like an array).

Looping over rows

VQL does not have a JOIN operator - we use the foreach plugin to iterate over the results of one query and apply a second query on it.

SELECT * FROM foreach(
    row={ <sub query goes here> },
    query={ <sub query goes here >})

Looping over arrays

Sometimes arrays are present in column data. We can iterate over these using the foreach plugin.

SELECT * FROM foreach(
    row=<An iterable type>,
    query={ <sub query goes here >})

If row is an array, the value will be assigned to _value as a special placeholder.

Conditional: if plugin and function

The if() plugin and function allows branching in VQL.

    condition=<sub query or value>,
    then={ <sub query goes here >},
    else={ <sub query goes here >})

If the condition is a query it is true if it returns any rows. Next, we’ll evaluate the then subquery or the else subquery. Note that as usual, VQL is lazy and will not evaluate the unused query or expression.

Conditional: switch plugin

The switch() plugin and function allows multiple branching in VQL.

SELECT * FROM switch(
    a={ <sub query >},
    b={ <sub query >},
    c={ <sub query >})

Evaluate all subqueries in order and when any of them returns any rows we stop evaluation the rest of the queries.

As usual VQL is lazy - this means that branches that are not taken are essentially free!

Conditional: chain plugin

The chain() plugin allows multiple queries to be combined.

SELECT * FROM chain(
    a={ <sub query >},
    b={ <sub query >},
    c={ <sub query >})

Evaluate all subqueries in order and append all the rows together.

Group by clause

A common need in VQL is to use the GROUP BY clause to stack all rows which have the same value, but what exactly does the GROUP BY clause do?

As the name suggests, GROUP BY splits all the rows into groups called bins where each bin has the same value of as the target expression.

Group By
Group By

Consider the query in the example above, the GROUP BY clause specifies that rows will be grouped where each bin has the same value of the X column. Using the same table, we can see the first group having X=1 contains 2 rows, while the second group having X=2 contains only a single row.

The GROUP BY query will therefore return two rows (one for each bin). Each row will contain a single value for the X value and one of the Y values.

As the above diagram illustrates, it only makes sense in general to select the same column as is being grouped. This is because other columns may contain any number of values, but only a single one of these values will be returned.

In the above example, selecting the Y column is not deterministic because the first bin contains several values for Y.

Be careful not to rely on the order of rows in each bin.

Aggregate functions

Aggregate VQL functions are designed to work with the GROUP BY clause to operate on all the rows in each bin separately.

Aggregate functions keep state between evaluations. For example consider the count() function. Each time count() is evaluated, it increments a number in its own state.

Aggregate function State is kept in an Aggregate Context - a separate context for each GROUP BY bin. Therefore, the following query will produce a count of all the rows in each bin (because each bin has a separate state).

SELECT X, count() AS Count

Aggregate functions are used to calculate values that consider multiple rows.

Some aggregate functions:

  • count() counts the total number of rows in each bin.
  • sum() adds up a value for an expression in each bin.
  • enumerate() collect all the values in each bin into an in-memory array.
  • rate() calculates a rate (first order derivative) between each invocation and its previous one.

These can be seen in the query below.

Aggregate functions
Aggregate functions

VQL Lambda functions

In various places it is possible to specify a VQL lambda function. These functions a simple VQL expressions which can be used as filters, or simple callbacks in some plugins. The format is simple:

x=>x.Field + 2

Represents a simple function with a single parameter x. When the lambda function is evaluated, the caller will pass the value as x and receive the result of the function.

Usually lambda functions are specified as strings, and will be interpreted at run time. For example the eval() function allows a lambda to be directly evaluated (with x being the current scope in that case).

SELECT eval(func="x=>1+1") AS Two FROM scope()

The scope that is visited at the place where the lambda is evaluated will be passed to the lambda function - this allows the lambda to access previously defined helper functions.

LET AddTwo(x) = x + 2

SELECT eval(func="x=>AddTwo(x=1)") AS Three FROM scope()